网上科普有关“什么是大数据时代”话题很是火热,小编也是针对什么是大数据时代寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
?
3、大数据应用,是
指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM
systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail
Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
2、是数据类别大和类型多样
数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化
数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、是处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
?
四:大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya
Krishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素各行各业的决策正在从“业务驱动”
转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
?
五:大数据的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如北京开运联合、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。
六:大数据对经济社会的重要影响
1、能够推动实现巨大经济效益
比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。
2、能够推动增强社会管理水平
大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。
3、如果没有高性能的分析工具,大数据的价值就得不到释放对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。
七:最后北京开运联合给您总结一下
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
简介:?什么是低代码?我们为什么需要低代码?低代码会让程序员失业吗?本文总结了低代码领域的基本概念、核心价值与行业现状,带你全面了解低代码。
什么是低代码
“Low-Code”是什么?如果你是第一次听说,没准也会跟我当年从老板口中听到这个词后的内心戏一样:啥?“Low-Code”?“Code”是指代码我知道,但这个“Low”字是啥意思?不会是老板发现我最近赶工写的代码很丑很“Low”吧... 想多了,老板怎么可能亲自review代码呢。那难道是指,“Low-level programming”里的“Low”?老板终于发现让我等编程奇才整天堆Java业务代码太浪费,要派我去闭关写一个高性能C语言网络库... 显然也不是,老板哪能有这技术情怀呢。那到底是什么意思?作为一名搜商比情商还高的程序员,能问Google的绝不会问老板。于是我一顿操作后,不假思索地点开了第一条搜索结果:Low-code development platform。
Wikipedia定义
从Wiki的这段定义中,我们可以提炼出几个关键信息:
低代码开发平台(LCDP)本身也是一种软件,它为开发者提供了一个创建应用软件的开发环境。看到“开发环境”几个字是不是很亲切?对于程序员而言,低代码开发平台的性质与IDEA、VS等代码IDE(集成开发环境)几乎一样,都是服务于开发者的生产力工具。 与传统代码IDE不同的是,低代码开发平台提供的是更高维和易用的可视化IDE。大多数情况下,开发者并不需要使用传统的手写代码方式进行编程,而是可以通过图形化拖拽、参数配置等更高效的方式完成开发工作。Forrester定义
顺着Wiki的描述还能发现,原来“Low-Code”一词早在2014年就由Forrester提出了,它对低代码开发平台的始祖级定义是这样的:
请点击输入描述
相比Wiki的版本,这个定义更偏向于阐明低代码所带来的核心价值:
低代码开发平台能够实现业务应用的快速交付。也就是说,不只是像传统开发平台一样“能”开发应用而已,低代码开发平台的重点是开发应用更“快”。更重要的是,这个快的程度是颠覆性的:根据Forrester在2016年的调研,大部分公司反馈低代码平台帮助他们把开发效率提升了5-10倍。而且我们有理由相信,随着低代码技术、产品和行业的不断成熟,这个提升倍数还能继续上涨。 低代码开发平台能够降低业务应用的开发成本。一方面,低代码开发在软件全生命周期流程上的投入都要更低(代码编写更少、环境设置和部署成本也更简单);另一方面,低代码开发还显著降低了开发人员的使用门槛,非专业开发者经过简单的IT基础培训就能快速上岗,既能充分调动和利用企业现有的各方面人力资源,也能大幅降低对昂贵专业开发者资源的依赖。低代码核心能力
基于上述的定义和分析,不难总结出如下这3条低代码开发平台的核心能力:
请点击输入描述
全栈可视化编程:可视化包含两层含义,一个是编辑时支持的点选、拖拽和配置操作,另一个是编辑完成后所及即所得(WYSIWYG)的预览效果。传统代码IDE也支持部分可视化能力(如早年Visual Studio的MFC/WPF),但低代码更强调的是全栈、端到端的可视化编程,覆盖一个完整应用开发所涉及的各个技术层面(界面/数据/逻辑)。 全生命周期管理:作为一站式的应用开发平台,低代码支持应用的完整生命周期管理,即从设计阶段开始(有些平台还支持更前置的项目与需求管理),历经开发、构建、测试和部署,一直到上线后的各种运维(e.g. 监控报警、应用上下线)和运营(e.g. 数据报表、用户反馈)。 低代码扩展能力:使用低代码开发时,大部分情况下仍离不开代码,因此平台必须能支持在必要时通过少量的代码对应用各层次进行灵活扩展,比如添加自定义组件、修改主题CSS样式、定制逻辑流动作等。一些可能的需求场景包括:UI样式定制、遗留代码复用、专用的加密算法、非标系统集成。不只是少写代码
回到最初那个直击心灵的小白问题:Low-Code中的“Low”,到底是啥意思?答案已经显而易见:既不是指抽象程度很低(相反,低代码开发方式的抽象程度要比传统编程语言高一个level),也不是指代码很low(也相反,低代码所生成的代码一般都经过精心维护和反复测试,整体质量强于大部分手写代码),而是单纯的“少写代码” —— 只在少数需要的情况下才手写代码,其他大部分时候都能用可视化等非代码方式解决。
再往深一点儿看,低代码不只是少写代码而已:代码写得少,bug也就越少(正所谓“少做少错”),因此开发环节的两大支柱性工作“赶需求”和“修bug”就都少了;要测的代码少了,那么测试用例也可以少写不少;除了开发阶段以外,平台还覆盖了后续的应用构建、部署和管理,因此运维操作也更少了(Low-Code → Low-Ops)。
然而,少并不是最终目的:如果单纯只是想达到少的效果,砍需求减人力、降低质量要求也是一样的。低代码背后的哲学,是少即是多(Less is More),或者更准确说是多快好省(Do More with Less) —— 能力更多、上线更快、质量更好,成本还更省,深刻践行了阿里“既要,又要,还要”的价值观精髓。
请点击输入描述
平台的职责与挑战
上面说的是低代码给开发者提供的能力与吸引力,那么作为服务的提供方与应用的承载者,低代码开发平台自身应该承担怎样的职责,其中又会遇到多大的挑战?是否就一定要如阿里云所主张的那样,“把复杂留给自己,把简单留给别人”?虽然这句话听起来很深明大义,但不知道大家有没有想过,为什么我们一定要抱着复杂不放,平白无故给自己找事?就不能直接干掉复杂,也给咱阿里云自己的员工留点简单吗?是工作太容易就体现不出来KPI价值了,还是家里的饭菜不如公司的夜宵香?
冥思苦想许久后,我从热力学第一定律中找到了答案:开发一个应用的总复杂度是恒定的,只能转移而不可能凭空消失。要想让开发者做的更少,安心享受简单的快乐,那么平台方就得做的更多,默默承担尽可能多的复杂度。就像一个满身腱子肉的杂技男演员,四平八稳地托举着在高处旋转与跳跃的女搭档;上面的人显得越轻盈越毫不费力,下面的人就得越稳重越用尽全力。当然,不是说上面的女演员就很轻松没压力,只是他们各自的分工不同,所承担的复杂度也不一样。
根据《人月神话》作者Fred Brooks的划分,软件开发的复杂度可以划分为本质复杂度(Essential complexity )和偶然复杂度(Accidental complexity)。前者是解决问题时固有的最小复杂度,跟你用什么样的工具、经验是否丰富、架构好不好等都无关,而后者就是除此之外在实际开发过程中引入的复杂度。通常来说,本质复杂度与业务要解决的特定问题域强相关,因此这里我把它称为更好理解的“业务复杂度”;这部分复杂度不是任何开发方法或工具能解决的,包括低代码。而偶然复杂度一般与开发阶段的技术细节强相关,因此我也相应把它称为“技术复杂度”;而这一部分复杂度,恰好就是低代码所擅长且适合解决的。
为开发者尽可能屏蔽底层技术细节、减少不必要的技术复杂度,并支撑其更好地应对业务复杂度(满足灵活通用的业务场景需求),这是身为一个低代码开发平台所应该尽到的核心职责。
请点击输入描述
在尽到上述职责的同时,低代码开发平台作为一个面向开发者的产品,还需要致力于为开发者提供简单直观的极致开发体验。这背后除了巨大的工作量,还得能在“强大”和“易用”这两个很难两全其美的矛盾点之间,努力找到一个符合自己产品定位与目标客户需求的平衡点 —— 这也许是设计一个通用低代码开发平台所面临的最大挑战。
三、低代码相关概念对比
纯代码(Pro-Code / Custom-Code)
“纯代码”可能算是我杜撰的一个词,更常见的说法是专业代码(Pro-Code)或定制代码(Custom-Code);但意思都一样,就是指传统的以代码为中心(Code-Centric)的开发模式。之所以我选择用“纯代码”,是因为如果用“专业代码”会显得似乎低代码就不专业了一样,而用“定制代码”又容易让人误解成低代码无法支持定制的自定义代码。
当然,更准确的称谓我认为是“高代码”(与低代码恰好对应,只是名字太难听,被我嫌弃了...),因为即便是使用传统的代码IDE,有些开发工作也支持(甚至更适合)以非代码方式完成,比如:iOS端开发时使用的SwiftUI界面设计器、服务端开发数据库应用时使用的PowerDesigner建模工具。不过这部分可视化工作在传统开发模式下只是起辅助作用,最后通常也是生成开发者可直接修改的代码;开发者仍然是以代码为中心来开展主要工作。
低代码与纯代码之间的关系,其实跟视频和文章之间很像:
低代码就像是现代的“视频”,大部分内容都由直观易理解、表达能力强的组成,因此更容易被大众所接受。但与此同时,视频也不是死板得只能有,完全可以添加少量文字(如字幕、标注)来弥补表达不够精确的问题。BTW,关于“图”和“文字”之间的辩证关系,可以进一步参考《架构制图:工具与方法论》[1]这篇文章中的相关描述。
纯代码则更像是传统的“文章”,虽然很久以来都一直是信息传播的唯一媒介,但自从视频技术诞生以及相应软硬件基础设施的普及以来,便逐渐开始被抢走了风头。如今,视频已成为大部分人获取信息的主要渠道(从电视**到B站抖音),而经常读书读文章的人却越来越少。但不可否认的是,文章依然有它存在的意义和受众(不然我也不会费这劲敲这么多字了),即使“市场份额”一直在被挤压,但永远会有它立足的空间。
请点击输入描述
如果按上面这种类比关系推导,低代码未来也会遵循与视频类似的发展轨迹,超越纯代码成为主流开发模式。Gartner的预测也表达了相同的观点:到2024年,所有应用程序开发活动当中的65%将通过低代码的方式完成,同时75%的大型企业将使用至少四种低代码开发工具进行应用开发。
但同样地,就像是视频永远无法取代文章一样,低代码也永远无法彻底取代纯代码开发方式。未来低代码和纯代码方式将以互补的形态长期共存,各自在其所适合的业务场景中发光发热。在后面的“低代码业务场景”章节,会详细列出哪些场景在现阶段更适合用低代码模式开发。
零代码(Zero-Code / No-Code)
从分类的完备性角度来看,有“纯代码”自然也应该有完全相反的“零代码”(也称为“无代码”)。零代码就是完全不需要写代码的应用开发平台,但这并不代表零代码就比低代码更高级和先进,它只是做了一个更极端的选择而已:彻底拥抱简单的图形可视化,完全消灭复杂的文本代码。选择背后的原因是,零代码开发平台期望能尽可能降低应用开发门槛,让人人都能成为开发者(注意:开发 ≠ 写代码),包括完全不懂代码的业务分析师、用户运营,甚至是产品经理(不懂装懂可不算懂)。
即便是专业开发者,在技术分工越来越精细的趋势下(前端/后端/算法/SRE/数据分析..),也很难招到一个能独立开发和维护整套复杂应用的全栈工程师。但零代码可以改变这一切:无论是Java和JavaScript傻傻分不清楚的技术小白,还是精通深度学习但没时间学习Web开发的算法大牛,都可以通过零代码实现自己的技术梦或全栈梦。“改变世界的idea已有,就差一个程序员了”,这句玩笑话或许真的可以成真;哦不,甚至都用不着程序员,有idea的人自己就能上。
请点击输入描述
当然,所有选择都要付出代价,零代码也不例外。完全抛弃代码的代价,就是平台能力与灵活性受限:
一方面,可视化编辑器的表达能力远不及图灵完备的通用编程语言,不引入代码根本没法实现灵活的定制与扩展(当然,理论上也可以做成Scrach/Blockly那样的图形编程语言,但那样不过是换一种形式在手写代码而已)。 另一方面,由于目标受众是非专业开发人员,平台能支持的操作会更趋于“傻瓜化”(e.g. 页面只支持大块业务组件的简单堆叠,不支持细粒度原子组件和灵活的CSS布局定义),同时也只会透出相对“亲民化”的模型和概念(e.g. 使用“表格”表示数据,而不是用“数据库”),无法支撑强大专业的底层开发原语和编程理念。请点击输入描述
虽然零代码与狭义上的低代码有着上述明显差异,但从广义上来说,零代码可以当作低代码的一个子集。Gartner在其相关调研报告中,就是将“No Code”划在了范围更广的低代码应用平台“LCAP”(Low-Code Application Platform)中。而当前市面上很多通用的低代码开发平台,也都兼具一定程度的零代码能力;比如低代码领域领头羊Mendix,既提供了简单易用的零代码Web IDE - Mendix Studio,也包括一个功能更强大的低代码桌面IDE - Mendix Studio Pro。
HpaPaaS(高生产力应用PaaS)
上文提到,“Low-Code”一词是拜Forrester所赐。作为同样是国际知名调研机构(a.k.a 造词小能手)的Gartner,显然不会轻易在这场可能决定低代码领域江湖地位的新概念作词大赛中认输,于是也于2017年发明了“HpaPaaS”(High-productivity application Platform as a Service)这个听上去更高大上的缩写词。
按照Gartner的定义,HpaPaaS是一种支持声明式、模型驱动设计和一键部署的平台,提供了云上的快速应用开发(RAD)、部署和运行特性;这显然与低代码的定义如出一辙。但事实证明,名字起得太专业并不见得是好事,“HpaPaas”最终还是败给了起源更早、更接地气也更顺口的“Low-Code”:从2019年开始,Gartner在其相关调研报告中也开始全面采用“Low-Code”一词(如LCAP),亲手为“HpaPaaS”打上了 @deprecated 印记。
请点击输入描述
图源:What’s the difference between SaaS / IaaS / PaaS / aPaaS / HpaPaaS?
值得补充的是,“HpaPaaS“这个词也并非横空出世,而是传承自更早之前Gartner提出的“aPaaS”,它俩之间的关系是:HpaPaaS只是aPaaS的一个子类;除了HpaPaaS这种通过低代码实现的高生产力应用开发平台以外,aPaaS还包括面向纯代码的传统应用开发平台(High-control aPaaS,即可控度更高的纯代码开发方式)。
不值得但就想八卦一下的是,“aPaaS”这个词也非凭空捏造,而是与云计算的兴起渊源颇深。相信各位云道中人都已猜到,aPaaS与IaaS/PaaS/SaaS这些云计算远古概念是一脉相承的:aPaaS介于PaaS和SaaS之间,相比PaaS提供的服务更偏应用,但又不像SaaS一样提供现成的软件服务(更详细的说明可参考配图来源文章)。
四、为什么需要低代码
低代码是什么可能并没那么重要,毕竟在这个信息爆炸的世界,永远不缺少新奇而又短命的事物。大部分所谓的新技术都只是昙花一现:出现了,被看到了;大部分人“哦”了一声,已阅但表示不感兴趣;小部分人惊叹于它的奇思妙想,激动地点了个赞后,回过头来该用什么还是什么。真正决定新技术是否能转化为新生产力的,永远不是技术本身有多么优秀和华丽,而是它是否真的被需要,即:为什么需要低代码?如果用不同的主语填充上面这个问句(冷知识:这叫做“延迟主语初始化”),可以更全面地看待这个问题:
为什么「市场」需要低代码?
在这个大爷大妈都满嘴“互联网+”和“数字化转型”的时代,企业越来越需要通过应用(App)来改善企业内部的信息流转、强化与客户之间的触点连接。然而,诞生还不太久的IT信息时代,也正面临着与我国社会主义初级阶段类似的供需关系矛盾:落后的软件开发生产力跟不上人民日益增长的业务需求。
请点击输入描述
Gartner预测,到2021年应用开发需求的市场增长将至少超过企业IT交付能力的5倍。面对如此巨大的IT缺口,如果没有一种革命性的“新生产力”体系,很难想象仅凭现有传统技术体系的发展延续就能彻底解决问题。而低代码技术正是带着这样的使命而降临,期望通过以下几个方面彻底革新应用开发生产力,拯救差一点就要迈入水深火热的IT世界:
提效降本 & 质量保障
虽然软件行业一直在高速发展,新的语言、框架和工具层出不穷,但作为从业者我们不得不承认:软件开发仍处于手工作坊阶段,效率低、人力成本高、质量不可控。项目延期交付已成为行业常态,而瓶颈几乎总是开发人员(对机器能解决的问题都不是问题);优秀的开发人才永远是稀缺资源,还贼贵;软件质量缺陷始终无法收敛,线上故障频发资损不断。
相比而言,传统制造业经过几百年工业革命的发展,大部分早已摆脱了对“人”的强依赖:从原料输入到制品输出,中间是各种精密仪器和自动化流水线的稳定支撑,真正实现生产的标准化和规模化。虽然信息化号称是人类的第三次工业革命,但以软件行业目前的状况,远远还没到达成熟的“工业化”阶段。
所以,亲爱的程序员朋友,当你与前端联调了一上午接口,又与产品撕逼了一下午需求,再与自己的bug抗争了一整晚,好不容易遁入梦乡又被一连串报警短信吵醒时,是否有抬头对着星空憧憬过:“I have a dream... that one day,软件开发也能像工业制品一样,批量流水化生产,稳定高效没烦恼。” 事到如今,不管你有没有意识到,这个憧憬正在慢慢变成现实。
请点击输入描述
是的,低代码正在将应用软件开发过程工业化:每个低代码开发平台都是一个技术密集型的应用工厂,所有项目相关人员都在同一条产线内紧密协作。开发主力不再是熟知for循环一百种写法的技术Geek,而是一群心怀想法业务sense十足的应用Maker。借助应用工厂中各种成熟的基础设施、现成的标准零件、自动化的装配流水线,开发者只需要专注于最核心的业务价值即可。即便是碰到非标需求,也可以随时自己动手,用最灵活的手工定制(代码)方式来解决各种边角问题。
扩大应用开发劳动力
通过让大部分开发工作可以仅通过简单的拖拽与配置完成,低代码(包括零代码)显著降低了使用者门槛,让企业能够充分利用前面所提到的平民开发者资源。部分纯零代码需求场景下,低代码还能让业务人员实现自助式(self-service)应用交付,既解决了传统IT交付模式下的任务堆积(backlog)问题,避免稀缺的专业开发资源被大量简单、重复性的应用开发需求所侵占,也能让业务人员真正按自己的想法去实现应用,摆脱交由他人开发时不可避免的桎梏。
请点击输入描述
至此,应用开发能力不再是少数专业开发者的专利和特权,且今后所需要的技能门槛与拥有成本也会越来越低,真正实现所谓的“技术民主化”(democratization of technology)。
加强开发过程的沟通协作
多方调查结果显示,软件项目失败的最主要原因之一就是缺乏沟通(poor communication)。传统开发模式下,业务、产品、设计、开发、测试与运维人员各司其职,且各有一套领域内的工具和语言,长久以来很容易形成一个个“竖井”(silos),让跨职能的沟通变得困难而低效。这也是为什么当前热门的敏捷开发和DevOps都在强调沟通(前者是协同Biz与Dev,而后者是协同Dev和Ops),而经典的DDD领域驱动设计也主张通过“统一语言”来减少业务与技术人员之间的沟通不一致。
请点击输入描述
有了低代码后,这一状况将得到根本改善:上述各角色都可以在同一个低代码开发平台上紧密协作(甚至可以是同一个人),这种全新的协作模式不仅打破了职能竖井,还能通过统一的可视化语言和单一的应用表示(页面/数据/逻辑),轻松对齐项目各方对应用形态和项目进度的理解,实现更终极的敏捷开发模式,以及在传统DevOps基础之上更进一步的BizDevOps[2]。
统一开发平台下的聚合效应
低代码尝试将所有与应用开发相关活动都收敛到同一个平台(one platform)上后,将会产生更多方面的聚合效应与规模收益:
人员聚合:除了上一点所提到的各职能角色紧密协作以外,人员聚合到统一的低代码开发平台进行作业后,还能促进整个项目流程的标准化、规范化和统一化。 应用聚合:一方面,新应用的架构设计、资产复用、相互调用变得更容易;另一方面,各应用的数据都天然互通,同时平台外数据也能通过集成能力进行打通,彻底消除企业的数据孤岛问题。 生态聚合:当低代码开发平台聚合了足够多的开发者和应用后,将形成一个巨大的、连接一切、有无限想象力的生态体系,彻底放飞低代码的价值。关于“什么是大数据时代”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[初瑶]投稿,不代表空气号立场,如若转载,请注明出处:https://haokongqi.org.cn/cshi/202504-2082.html
评论列表(4条)
我是空气号的签约作者“初瑶”!
希望本篇文章《什么是大数据时代》能对你有所帮助!
本站[空气号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“什么是大数据时代”话题很是火热,小编也是针对什么是大数据时代寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。世界包含的多得...